If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x-36x^2=0
a = -36; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·(-36)·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*-36}=\frac{-90}{-72} =1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*-36}=\frac{0}{-72} =0 $
| 2b+9=2 | | 4-x=6x-10 | | 6x+10=6x-10=180 | | 6x-10=6x+10=180 | | 7x-19=4x+2=180 | | 3-2x-3x=-9+3x | | 3a2·2a=3 | | 3x+8=5x-40=180 | | 42=u-5 | | 2×^2+8y=121.5 | | 2/5k-1/3=1/7 | | j=9(4) | | n+80=41 | | 7(a-2)-8=7a | | 70=110/90x | | Q=14-1/2x20 | | 9x+4=11x-8+x | | -6w(625w)=w | | 5t-4=17-2t | | 5k=5k+10 | | f=7/6 | | 31/2-x=51/2+4x | | -2x+16.4=12.6 | | 5-(x-7)=6(x+11) | | 100x+15=90x+45 | | 7x+20+2x=6x+23-19 | | -5p-6(6-2p)=3(p-4)-20 | | -3x+8x-7=5(x-4)-3 | | .9=-0.3x+21 | | 5y=3•22.50 | | 2a-18.4=a+2.6 | | (7x+21)+3x=21 |